
SYNTHESES VIA ISOXAZOLINES III ¹. DIASTEREOSELECTIVE SYNTHESIS OF γ -AMINO-ALCOHOLS WITH 2 AND 3 CHIRAL CENTRES ²

V. Jäger*, V. Buß, and W. Schwab

Institut für Organische Chemie der Justus Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-6300 Lahn-Giessen 1

The stereoselective construction of acyclic compounds with multiple chiral centres is still considered a formidable synthetic problem ³. We wish to report here our results on stereoselective hydroxy- α -aminoalkyl addition ⁴ to non-activated olefinic double bonds by the sequence $1 \rightarrow 3 \rightarrow 4$, generating γ -amino-alcohols 4.

The first step, 1.3-dipolar cycloaddition of nitrile oxides to alkenes, produces 2-isoxazolines in high yield ^{5, 6}. It may be viewed as a C— C bond-forming process where N and O functionalities are arranged simultaneously in 1.3-position of the future acyclic system. The second step, 2-isoxazoline reduction, uncovers the γ -aminoalcohol unit ⁷ while creating an additional asymmetric centre. Moreover, <u> β -substituents</u> may be added at the isoxazoline stage (see preceding paper) to provide 4-substituted isoxazolines such as <u>3e</u>, 3f, 3g and the corresponding 4 on reduction:

3133

Reductions of <u>3</u> have been described by several groups ${}^{5c, 8}$, however, the stereochemical result ⁹ has not attracted any attention or has been non-promising ${}^{5c, 8a, 8b}$. We felt that the sequence $1 \rightarrow 4$ might bear considerable potential for the stereoselective synthesis of simple γ -amino-alcohols as well as of more complex natural products, such as aminosugars ¹¹ or α -amino γ -hydroxy acids ^{8b, 12}. Three aspects of this reduction therefore have been examined in detail:

- 1) the stereoselectivity of various reducing agents,
- 2) the degree of asymmetric induction caused by substituents in the 4- and/or 5-position of the isoxazoline ring,
- 3) configurational assignment to ß- and α -4 diastereomers $\frac{2c}{c}$.

With respect to stereoselectivity and yield, <u>lithium aluminium hydride</u> proved superior to other reducing systems applied ^{2c} $[H_2/Pd^{8a,b}, Na-Hg/H_2O^{8a,b}, Na/ethanol, Na/tert.-butanol, Me_2S^BH_3, NaAlH_2(OCH_2CH_2OCH_3)_2]$. Diastereomer ^{2c} ratios and yields of <u>isolated</u> products <u>4</u> are given in table 1. The following conclusions may be drawn from these data:

- a) major components correspond to the diastereomer expected from steric approach control of the hydride-transferring step;
- b) 5-substituents exhibit greater steric hindrance than do 4-substituents, i.e. <u>1.3-</u> exceeds 1.2-asymmetric induction ³!;
- c) for the reduction of <u>cis-</u> and <u>trans-4.5-dimethyl</u> compounds <u>3h</u> and <u>3i</u> we state <u>additivity of substituents effects</u> ($\Delta \Delta G_{5-CH_3}^{\ddagger} + \Delta \Delta G_{4-CH_3}^{\ddagger} = 1.11 \pm 0.49$ kcalmol⁻¹; 35°C) within experimental error of β/α determination:
 - 3h → 4h: estimated 1.6 ($\beta:\alpha$ 93:7), found 1.35 (90:10)
 - $3i \rightarrow 4i$: estimated 0.62 (73:27), found 0.58 (72:28)

To our opinion, the sequence $\underline{1} \rightarrow \underline{4}$ constitutes the most convenient and versatile way to assemble N-unsubstituted γ -amino-alcohols. The present results should further enable to <u>predict the stereochemical outcome</u> of this route for a variety of other γ -amino-alcohols with non-complexing substituents.

Experimental procedure, γ -aminoalcohols <u>4</u> from isoxazolines <u>3</u>:

10 mmol of $\underline{3}$ in abs. ether are added with stirring to an ice-cold mixture of 10-14 mmol of LiAlH₄ in ether (30-100 ml total depending on the solubility of $\underline{3}$). Complete reaction (f. e. 3.5 h of reflux with $\underline{3a}$, 8 h at 0[°]C with $\underline{3b}$) is assured by TLC control. Per g of LiAlH₄ used, 1 ml of water, 0.75 ml of a 20% NaOH solution and 3.5 ml of water are then added slowly. The solids are filtered off and washed carefully with ether, then CHCl₃ or extraxted with CHCl₃ in a soxhlet apparatus. The organic solutes are combined, dried (Na₂SO₄) and evaporated. The residue is distilled or crystallized (from benzene/pentane or cyclohexane/ pentane) and dried (P₂O₅). - Aminoalcohols <u>4</u> readily absorb CO₂; they should further be stored and handled with exclusion of water and oxygen.

Compound	\mathbf{R}^{1}	R ²	R ³	R ⁴	$\beta/\alpha - 4^{b}$	Yield ^C	m.p. [°C] or b.p. [°C/Torr]
<u>4a</u> <u>4b</u>	сн ₃ сн ₃	H H	H H	сн ₃ с ₆ н ₅	85:15 87:13	74 79 ß:47 ^e	95/19 ^d 65-68 75
<u>4c</u> <u>4d</u>	с ₆ н ₅ с ₆ н ₅	н н	н н	сн ₃ с ₆ н ₅	≳95:5 95:5	78 98 ß:62 ^e	58-59 111-115 118-119
<u>4e</u>	Н	СН3	Н	с ₆ н ₅	69:31	82 ß:9 ^e	$84-96 \approx 10^{-4} d$ 57.5-59
<u>4f</u>	н	C_2H_5	н	с ₆ н ₅	72 : 28	89	$75 / \approx 10^{-4} d$
<u>4g</u>	н	$i-C_3H_7$	н	$C_6^{H_5}$	85:15 ^f	82	$80/\approx 10^{-4d}$
<u>4h</u>	CH ₃	Сн ₃	Н	с ₆ н ₅	90:10	ß:65 ^e	56
<u>4i</u>	СН3	Н	сн ₃	с ₆ н ₅	72:28	89 ß: 24 ^e	66-78 84-85
<u>4j</u>	-(CH ₂) ₃ -		н	СН3	97:3	87	55/0.35
<u>4k</u>	-(CH ₂) ₃ -		н	C_2H_5	96:4	73	83/1
<u>41</u>	-(C	² H ₂) ₃ -	Н	с ₆ н ₅	>95:5	97	$96-106 \approx 10^{-4} d$

Table 1, γ -Aminoalcohols <u>4</u> from LiAlH₄ reduction of 2-isoxazolines <u>3</u>^a

- c) structures of <u>4</u> are secured by IR-, ¹H-NMR-, ¹³C-NMR spectral data as well as correct elemental analysis for <u>4</u> and β -<u>4</u>, respectively, except for <u>4b</u> (not analyzed)^{2c}.
- d) Kugelrohr distillation, bath temperature.
- e) $\beta_{-\underline{4b}}$ with ≤ 2 , $\beta_{-\underline{4d}}$ with 4, $\beta_{-\underline{4h}}$ with 5, $\beta_{-\underline{4i}}$ with $< 5\% \alpha$ (NMR).
- f) α assignment to the minor component and β/α ratio tentative due to several overlapping peaks in the ¹³C-NMR spectrum.

References and Notes

- 1. Part 2: V. Jäger and W. Schwab, preceding.
- Results of a) the dissertation of V.B., to be completed in 1978, and b) the diploma thesis of W.S., 1978; presented in part during lectures at Brussels (Soc.Chim.Belg., Jan. 1977) and Marburg (July 1977); c) detailed accounts on results with other reducing agents and NMR work on configurations and conformations of <u>4</u> will appear elsewhere.
- For reviews and recent successful examples (also leading references) see

 a) J.W. Scott and D. Valentine, Jr., <u>Science 184</u>, 943 (1974); J.D. Morrison and H.S. Mosher, Asymmetric Organic Reactions, ACS, Washington, D.C. 1976; b) P.A. Bartlett and K.K. Jernstedt, <u>J.Amer.Chem.Soc. 99</u>, 4829 (1977); c) C.T. Buse and C.H. Heathcock, <u>J.Amer.Chem.Soc. 99</u>, 8109 (1977); d) Y. Okude et al., <u>J.Amer.Chem.Soc. 99</u>, 3179 (1977); e) J. Mulzer, J. Segner, and G. Brüntrup, <u>Tetrahedron Letters 1977</u>, 4651.
- Related sequences are known or possible with nitrone or amidomethylium cycloadditions to alkenes: see, f.e. D.St.C. Black, R.F. Crozier, and V.D. Davies, <u>Synthesis</u> <u>1975</u>, 205; R.R. Schmidt and A.R. Hoffmann, <u>Chem.Ber.</u> <u>107</u>, 78 (1974); C. Giordano and L. Abis, <u>Gazz.Chim.Ital.</u> <u>104</u>, 1181 (1974); cp. also U. Schöllkopf, R. Jentsch, K. Madawinata, and R. Harms, Liebigs Ann.Chem. <u>1976</u>, 2105.
- 5. a) T. Mukaiyama and T. Hoshino, <u>J.Amer.Chem.Soc.</u> <u>82</u>, 5339 (1960); b) M. Christl and R. Huisgen, <u>Chem.Ber.</u> <u>106</u>, <u>3345</u> (1973); R. Huisgen, <u>J.Org.Chem.</u> <u>41</u>, 403 (1976) and previous work cited; c) for an extensive review see C. Grundmann and P. Grünanger, The Nitrile Oxides, p. 96, Springer, Berlin 1971.
- 6) Although quite general, this route does not offer direct access to <u>4-substituted isoxa-</u> <u>zolines</u> such as <u>3e</u>, <u>3f</u>, <u>3g</u>. These compounds have been obtained by deprotonation/ alkylation of 3-phenyl-2-isoxazolines ¹.
- 7) For excellent reviews on "Latent Functionality" see D. Lednicer, <u>Adv. Org. Chem.</u> <u>8</u>, 179 (1972); A.I. Meyers, Heterocycles in Organic Synthesis, Wiley, New York 1974.
- 8) a) W. Stühmer and W. Heinrich, <u>Chem.Ber.</u> <u>84</u>, 224 (1951); b) G. Drehfahl and H.H. Hörhold, <u>Chem.Ber.</u> <u>97</u>, 159 (1964); c) G.W. Perold and F.V.K. von Reiche, <u>J.Amer.</u> Chem.Soc. <u>79</u>, 465 (1957).
- 9) ß-<u>4d</u> has been obtained by LiAlH₄ reduction of <u>3d</u> in 62% crude yield ^{8c}, after some controversy, the erythro configuration of ß-<u>4d</u> now is generally accepted ¹⁰.
- 10) J. English, Jr., and A.D. Bliss, J.Amer.Chem.Soc. <u>78</u>, 4057 (1956), cf. also for previous discussions regarding the configurational assignment of <u>4d</u> diastereomers; R. Lukeś, J. Kovář and K. Bláha, <u>Collect.Czech.Chem.Commun.</u> <u>25</u>, 2179 (1960), and references given.
- 11) Cf. J.S. Glasby, Encyclopaedia of Antibiotics, J. Wiley a. Sons, London New York. Sydney Toronto 1976.
- 12) Amino-acid analogues of 4 (R⁴ = COOH) have been found in toxic mushroom peptides (amanita species): Th. Wieland, <u>Naturwissenschaften</u> 59, 225 (1972); A. Gieren, P. Narayan, W. Hoppe, M. Hasan, K. Michl, Th. Wieland, H.O. Smith, G. Jung, and E. Breitmaier, <u>Liebigs Ann.Chem</u>. 1974, 1561 and previous work in this area.
- 13) This work was supported by the Deutsche Forschungsgemeinschaft and E. Merck, Darmstadt. V.B. is grateful for a graduate fellowship (GFG, Land Hessen and Federal Republic of Germany). We are obliged to Miss E. Schäfer for valuable contributions to the experimental work.

(Received in UK 14 June 1978; accepted for publication 22 June 1978)